
Correction de la feuille d'exercices 25

Exercice 1

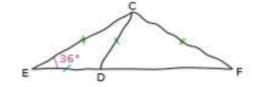
Calcule les mesures des angles du triangle CBD sachant que les points B, D et A sont alignés.

Correction

Dans le triangle CDA,

$$DCA = 180^{\circ} - 85^{\circ} - 35^{\circ} = 60^{\circ}$$

D'après le codage, (bien observer le codage!)


Dans l'angle plat BDA , (l'angle est plat car la consigne dit que B, D et A sont alignés)

Dans le triangle CBD,

$$\overline{DCA} = 180^{\circ} - (95^{\circ} + 60^{\circ}) = 25^{\circ}$$

Exercice 2

Calcule les mesures des angles du triangle CFD sachant que les points E, D et F sont alignés.

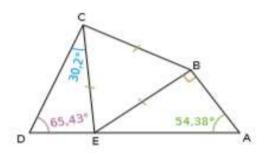
Correction

Dans le triangle ECF isocèle en C, (bien observer le codage vert !)

Dans le triangle CDA isocèle en D. (bien observer le codage bleu!)

Dans l'angle plat EDF , (l'angle est plat car la consigne dit que E, D et F sont alignés)

$$CDF = 180^{\circ} - 108^{\circ} = 72^{\circ}$$


Dans le triangle CDF,

$$DCF = 180^{\circ} - 72^{\circ} - 36^{\circ} = 72^{\circ}$$

(il existe d'autres possibilités pour trouver les angles dans cet exercice)

Exercice 3

Dans la figure à droite, les points D, E et A sont-ils alignés ? Justifie.

(on va calculer l'angle DEA pour voir s'il est plat)

Correction

Dans le triangle DEC.

$$\overline{DEC} = 180^{\circ} - 65,43^{\circ} - 30,2^{\circ} = 84,37^{\circ}$$

Dans le triangle CBE équilatéral, (bien observer le codage vert !)

Dans le triangle ABE rectangle en B,

$$BEA = 180^{\circ} - (90^{\circ} + 54,38^{\circ}) = 35,62^{\circ}$$

On peut donc maintenant calculer l'angle DEA :

En conclusion, DEA n'est pas un angle plat car il ne mesure pas 180° et donc les points D, E et A ne sont pas alignés.

(on dirait bien que D, E et A sont alignés en observant la figure mais c'est faux. Un centième de degré ne peut pas être distingué à l'œil)

Exercice 4

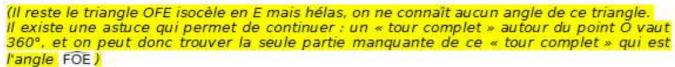
Calcule toutes les mesures de tous les angles des triangles visibles dans la figure à droite.

Correction

Dans le triangle AOF,

$$\widehat{AOF} = 180^{\circ} - (40^{\circ} + 63^{\circ}) = 77^{\circ}$$

Dans le triangle AOB équilatéral,

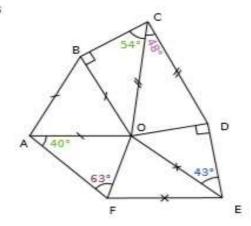

Dans le triangle CBO rectangle en B,

Dans le triangle COD isocèle en C,

$$\widehat{COD} = \widehat{CDO} = (180^{\circ} - 48^{\circ}) \div 2 = 132^{\circ} \div 2 = 66^{\circ}$$

Dans le triangle ODE rectangle en D,

$$\overline{DOE} = 180^{\circ} - 90^{\circ} - 43^{\circ} = 47^{\circ}$$



On peut donc maintenant calculer l'angle FOE :

$$FOE = 360^{\circ} - (77^{\circ} + 60^{\circ} + 36^{\circ} + 66^{\circ} + 47^{\circ}) = 360^{\circ} - 286^{\circ} = 74^{\circ}$$

Dans le triangle FOE isocèle en E,

Et donc
$$OEF = 180^{\circ} - 2 \times 74^{\circ} = 32^{\circ}$$

